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The Effect of Secondary Flow on Heat Transfer 
from a Rotating Sphere to Oldroyd-B Fluid 

S. E. E. Hamza 
 

Abstract— The subject of this work is the study of the effect of secondary flow on heat transfer from a rotating sphere to Oldroyd-B fluid. 
The Navier-Stokes equations governing the steady axisymmetric flow can be written as two coupled, nonlinear partial differential equations 
for the stream function and rotational velocity component. Slow flow approximation is used to solve the equations of motion and the energy 
equation. Therefore, all dynamical variables in the governing equations are expanded in power series in terms of Reynolds number Re, 
and Deborah number De. The solution of the obtained partial differential equations is valid for small values of Re and De, and all values of 
Prandtl number Pr. The analysis of the obtained solution shows that, the stream function consists of two additional secondary flow parts 
caused by elastic and inertia effects. So, the properties of the resultant stream line pattern depend on the relative magnitudes of the two 
parts. If Re and De differ from each other appreciably, then one is dominant and imprints its character on what happens. Under certain 
conditions, the superposition leads to a different situation. At some critical values of Re and De it is noticed that, a spherically shaped 
stagnation stream surface is formed in the fluid. The radius of this surface is calculated. The effect of the secondary flow on the 
temperature distribution and heat transfer rate are calculated and analyzed. Flow patterns of velocity distribution, temperature profile and 
Nusselt number are presented at 70.Pr =  and for different values of Re and De. 

Index Terms— Heat transfer, Oldroyd-B, Prandtl number, Rotating sphere, Secondary flow, Stagnation surface, Stream function.   
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1 INTRODUCTION                                                                     
HE problem of rotating sphere in viscoelastic fluid and the 
associated problem of heat transfer have been studied 
extensively by several rheologests due to its importance in 

various technical and rheological problems. Examples of these 
problems are rotary machines, spherical heat exchangers and 
rheological measurements of the viscoelastic fluids parame-
ters. Also, the secondary flow field which occurs around the 
rotating sphere have an important influence in chemical engi-
neering (e.g., mixing processes) and dynamics of separation 
processes [1], [2], [3], [4], [5], [6], [7]. Reiner [8] was the first 
who formulate the rheological equation of state of a fluid for 
which normal stresses occur in steady shear flow, and Weis-
senberg [9] actually demonstrated the presence of such effect. 
Ericksen alone [10] and in collaboration with Rivilin [11] 
pointed out that, under certain conditions such normal stress-
es may lead to secondary flow phenomena.  

Giesekus [12] has solved and applied experimentally the 
problem of a rotating sphere in a second-order viscoelastic 
fluid up to the first-order approximation by using the pertur-
bation method. The obtained secondary flow pattern is equiv-
alent to our first-order solution one only. Giesekus carried out 
the experiment using a sphere of 48 mm. diameter which ro-
tates in a 5% aqueous solution of Polyacrylamide at Co22 . 
The main result of this experiment is that, the normal stresses 
produce a secondary flow towards the sphere in the equatorial 
plane and away from it along the axis of rotation. But with 
increasing the angular velocity, the streamlines of the second-
ary flow shift slightly towards the pole axis and at some criti-
cal speeds a zone of double torus divided by the equatorial 
plane is formed. Giesekus observed this effect experimentally 
and he pointed out (without theoretical interpretation) that it 

depends on the fluid properties and on the angular velocity of 
the sphere. 

In fact, the fluid parameters such as viscosity, first normal 
stress and second normal stress are very sensitive to tempera-
ture changes. Moreover, the fluid suffering from a large tem-
perature variation in industry due to forced mechanical opera-
tions. This application increases the gap between the meas-
ured parameters in laboratory and real parameters control the 
motion in industry. Hence, the temperature is considered as a 
source of error in rheological measurements. So, the aim of the 
present work is to deduce the effect of secondary flow on heat 
transfer with application of an external temperature source on 
the sphere boundary. This helps us to improve the control of 
the fluid motion in applications [13]. 

Free convection from a rotating sphere has been investigat-
ed by many researchers. Taking into account the extra terms of 
O(Re) in the velocity field predicted by Proudmann and Pear-
son [14], Rimmer [15], [16] obtained an improved expression 
for the mean Nusselt number describing the rate of heat trans-
fer from the solid surface. His results are in good agreement 
with the numerical results of Dennis et al. [17]. Takhar and 
Whitelaw [18] extended this study to the case of a rotating 
sphere taking the velocity field given by Whitelaw [19]. They 
observed that rotation enhances heat transfer. 

The problem of interest in the current study involves the ef-
fect of secondary flow due to elastic and inertia on the velocity 
and temperature fields around a rotating sphere in viscoelastic 
fluid. We use an approximate method for the limit of small 
Reynolds and Deborah numbers. This method is quite reason-
able and is satisfied in many practical situations. The results of 
the secondary flow, stream lines and torque predict the exper-
imental results qualitatively [12] and can be applied to the 
upper-convected Maxwell fluid and Newtonian fluids. 

T 
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2 GOVERNING EQUATIONS 
We consider a uniformly heated sphere of radius R rotates in 
an infinite viscoelastic fluid media with an angular velocity Ω 
about its polar axis. Spherical polar coordinate system ),,r~( ϕθ  
with its origin at the center of the sphere and the line 0=θ  as 
the polar axis is adopted to describe the mathematical formu-
lation, Fig. 1. It is assumed that, the sphere is kept at constant 
temperature 1T~ , while the fluid is still maintained at 2T~  with 

21 T~T~ > . The fluid has a density ρ , heat capacity per unit mass 

pc , and thermal conductivity k. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The equations governing steady, incompressible, and vis-
coelastic flow are continuity, momentum, and energy equa-
tions 

0=⋅∇ v~ ,                                                                                        (1a) 

( ) τρ ~~p~v~v ⋅∇+∇−=∇⋅ ,                                                                 (1b) 

T~~kT~~vcp
2∇=∇⋅ρ ,                                                                       (1c) 

here v  is the velocity vector, p is the pressure, T~  is the tem-
perature of the fluid and τ~  is the stress tensor which is given 
from  Oldroyd-B model [20], [21] as: 











+=+
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d~d~~~

o 21 2 λητλτ ,                                                               (2) 

where d~  is the rate of strain tensor, 1λ  is the relaxation time, 

2λ  is the retardation time, oη  is the zero-shear rate viscosity 
and the symbol “ ∇ ” over any tensor denotes the upper-
convected derivative. Setting 02 =λ  in (2) reduces it to Max-
well model while Newtonian fluid is obtained by setting 

021 == λλ . 
In spherical polar coordinates, the velocity field and the 

temperature may be written as: 
[ ] ),r~(T~T~,),r~(w,),r~(,),r~(uv θθθυθ == ,                                 (3) 

the velocity and the temperature are independent of the coor-
dinate ϕ  due to the symmetry about the z-axis. Since the flow 
is described in the meridian plane, the velocity components u 

and υ  can be expressed in terms of the stream function 
),r~( θψ , which satisfy the continuity equation as: 
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Taking the divergence of (2) then substituting in (1b), we get  

( ) 
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d~~~d~~p~v~v oo 21 22 λητληρ .                                   (5) 

Let the radius of the sphere, R, and the angular velocity, Ω, 
be reference values of length and velocity, respectively. Then 
nondimensional variables can be defined via: 
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Introducing the above dimensionless quantities into (2), (4), (5) 
and (1c), we get 








 −−=
∇∇
dDed ξττ 22 ,                                                                 (7a) 







∧−∇=+=⊥ ϕ

θ
Ψ

θ ˆ
s∇nr

ˆVr̂UV ,                                             (7b) 

02 =∇−−−∇ PDeReV ΛΓ ,                                                     (7c) 

TTVRePr 2∇=∇⋅ ,                                                                    (7d) 
where the two vectors Γ  and Λ  are given by: 

VV ∇⋅=Γ ,                                                                                  (8a) 








 −⋅∇=
∇∇
dξτΛ 2 .                                                                        (8b) 

and 
1

2
λ
λ

ξ = . Equations (7) are characterized by Deborah num-

ber De, Reynolds number Re and Prandtl number Pr given by: 

Ωλ1=De , 
o

RRe
η

Ωρ 2
= , 

k
c

Pr opη= .                          (9) 

Since ϕ̂WVV += ⊥ , ϕΓΓΓ ˆ3+= ⊥  and ϕΛΛΛ ˆ3+= ⊥  with 

θ̂Vr̂UV +=⊥ , θΓΓΓ ˆr̂ 21 +=⊥   and  θΛΛΛ ˆr̂ 21 +=⊥ ,  then  

(7c)  may  be  decomposed  into the  ϕ -component and the 
vector equation including the r- and θ -components as: 

( ) ( ) 033
2 =+−∇ ϕΛΓϕ ˆDeReˆW ,                                                (10a) 

02 =∇−−−∇ ⊥⊥⊥ PDeReV ΛΓ .                                         (10b) 

Applying the curl operation to (10b) and using (7b), the equa-
tions of motion, (10a) and (10b), after some mathematical han-
dling are reduced to: 

( ) ( ) 011
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2 =−−
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( )[ ] 012 =∂−∂− ΛΛθ θrs∇nDe r    (11b) 
The components of Γ  and Λ  are given in the Appendix. 
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Fig. 1. Flow geometry. 
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3 BOUNDARY CONDITIONS  
We assume that, the sphere is kept at constant temperature 1T~  
while the fluid at infinity is still at 2T~  such that 21 T~T~ > . Also 
we assume that, the sphere is rotating with angular velocity 

ẑΩΩ = . The linear velocity at infinity vanishes, 0=∞)(v , 
while at the  sphere surface is ϕθΩΩ ˆs∇nRr̂~R)R(v =∧= . 
Therefore, the boundary conditions in dimensionless form 
may be formulated as: 

,
s∇n
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0

θ
 









==
0
0

r,ΨΨ , 








=
0
1
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∞

=
1

r ,            (12a) 

and the symmetry conditions at the poles, ),( πθ 0= , are: 









====
0
0

T,W rΨΨ   for  








=
π

θ
0

.                         (12b) 

4 THE METHOD OF SUCCESSIVE APPROXIMATION  
The solution of the problem is obtained by the perturbation 
method. The perturbation parameters that describe the im-
portance of the inertial and elastic effects are the Reynolds and 
Deborah numbers. So, the dynamical variables are expanded 
as a power series in Re and De. For example, for H we write 
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with the help of (13), the governing equations,  (7a), (11a) and 
(11b) take the form: 
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The boundary conditions, (12a), can be written as: 
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where ∇jδ  is the Kronecker delta function. 

5 SOLUTION OF THE FLOW EQUATIONS  
The solution of (7d) and (14) subject to the boundary condi-
tions (14d) up to the first order, is the chief object of this paper. 
The flow equations are not coupled with the energy equation 
and need to be solved before the solution of the later one. 

5.1 Creeping Flow 
This step of approximation produces the leading terms in the 
expansion of W, Ψ  and T. The solution of these terms repre-
sent the creeping flow around the rotating sphere [22]. The 
lowest order in (14) are: 

),(),( d 0000 2=τ ,                                                                           (15a) 

( ) ( ) 01 00002 =
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01 00
2

2
2 =














 ∂∂+∂ ),(

r s∇nr
s∇n Ψ

θ
θ

θθ ,                                     (15c) 

with the boundary conditions: 
000 ,s∇nW ),( θ=  and 000000 ,, ),(

r
),( ==ΨΨ  for ∞= ,r 1 .   (15d) 

The solutions of (15b) and (15c) which satisfies the boundary 
conditions are:  

2
00

r
s∇nW ),( θ

= ,                                                                          (16a) 

and 
000 =),(Ψ .                                                                                   (16b) 

Regarding the heat transfer prediction, the coefficient of  
00 DeRe  in the energy equation, (7d), shows that the function 

),(T 00  must satisfy the equatioin: 
0002 =∇ ),(T ,                                                                               (17a) 

or 
02 000000002 =+++ ),(),(),(

r
),(

rr ,Tcot,T,rT,Tr θθθ θ ,                            (17b) 
with the boundary conditions: 

0100 ,T ),( =        for       ∞= ,r 1 .                                         (17c) 
The solution of (17b) and (17c) is: 

r
T ),( 100 = .                                                                                  (17d) 

5.2 Secondary Flow due to Inertial Effect  
In this section, we find the secondary flow due to small iner-
tial effects (centrifugal forces). Therefore, the coefficients of 

01 DeRe  in (14) are: 
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0001 ,W ),( =   and  000101 ,, ),(
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The solution of (18) requires the determination of ),(
∇

00Γ  for 

321 ,,∇ = . Since [ ]),(),( W,,V 0000 00= , we get from (A.1) in the 

Appendix the components ),(
∇
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θθθ coss∇nrcotW ),( 5200 −−=

− ,  (19b) 

and 
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Therefore, (18) take the forms: 
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The boundary conditions imposed on (20) implies that, the 
only solution satisfying (20a) is: 

001 =),(W ,                                                                                   (21a) 
and the solution of (20b) is: 
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 −= .                                                 (21b) 

By taking (7b) into account, the components of the velocity 
),(V 01

⊥  can be calculated from ),( 01Ψ  as: 
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θ
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4
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5.3 Secondary Flow due to Elastic Effect  
The coefficients of 10 DeRe  in (14) are 
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with the boundary conditions 
0010 ,W ),( =  and  001010 ,, ),(

r
),( ==ΨΨ  for    ∞= ,r 1 .      (22d) 

The lowest order solution shows that, the non-vanishing com-
ponents of ),( 00τ  and ),(d 00  are:  

( ) θτ ϕϕ s∇nrW,rW
r
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therefore, by using (A.4) and (A.5), the non-vanishing compo-

nents of 
),( 00∇

τ  and 
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d
00∇

 are: 

θτ ϕϕϕϕ
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while any other components are zeros. Therefore, the compo-
nents of the vector ),( 00Λ  appearing in (22) are given by: 

θξΛ 2700
1 118 s∇nr)(),( −−= ,              (24a) 

θθξΛ coss∇nr)(),( 700
2 118 −−= ,              (24b) 

and 
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3 =),(Λ .                (24c) 

Since 000
3 =),(Λ , then the only solution of (22b) is the identical 

solution: 
010 =),(W .                  (25) 

Equation (22c), after substitution of ),( 00
1Λ  and ),( 00

2Λ , reduces 
to: 
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   (26a) 
the solution of this equation for the boundary conditions (22d) 
is: 

θθξΨ coss∇n)r()r(r)(),( 22310 211
2
1

+−−−= − .            (26b) 

From ),( 10Ψ  we can obtain the components of the velocity 
),(V 10

⊥  as: 
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6 EFFECTS OF SECONDARY FLOW ON HEAT TRANSFER  
Energy equation, (7d), is a non-linear second-order partial dif-
ferential equation. The density function, TV ∇⋅ , in its left 
hand side is known from the solution of the flow equations. 
The secondary flow effects on heat transfer through its contri-
bution to the velocity field. To find these effects due to both 
inertia and elastic, we solve the energy equation up to the se-
cond-order approximation. 

6.1 Inertial Effects  
The coefficient of 01 DeRe  in (7d) is: 

),(),(),( TVPrT 0000012 ∇⋅=∇ ,               (27a) 
with the boundary conditions 

0001 ,T ),( =      for       ∞= ,r 1 .               (27b) 
By taking the zero-order solution into account, the right hand 
side of (27a) equal to zero. So, the solution of (27a) with the 
boundary conditions (27b) is: 

001 =),(T .                (27c) 
The coefficient of 02 DeRe  in (7d) is: 

[ ]),(),(),(),(),( TVTVPrT 00010100022 ∇⋅+∇⋅=∇ ,            (28a) 
with the boundary conditions 

0002 ,T ),( =       for       ∞= ,r 1 .              (28b) 
The right hand side of (28a) can be calculated as: 

00100 =∇⋅ ),(),( TV ,               (28c) 
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8
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r
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therefore, (28a) takes the form: 
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the complete solution of the last equation is: 

( )( )( )θ24302 31231
96
1 cosrrrPrT ),( −+−= −− .             (29b) 

6.2 Elastic Effect  
To show the elastic effect on heat transfer due to normal 
stresses, we solve the energy equation up to the first order of 

DeRe . So, the coefficient of this order in (7d) is: 
( )),(),(),(),(),( TVTVPrT 00101000112 ∇⋅+∇⋅=∇ ,            (30a) 

with the boundary conditions 
0011 ,T ),( =        for        ∞= ,r 1 .              (30b) 

By using (17d) and (26), the terms in the right hand side of 
(30a) are given by: 
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so, (30a) takes the form: 
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the solution of this equation is: 

( )( )( )( )θξ 254311 31410711
56
1 cosrrrrPrT ),( −+−−−−= −−− .  (32b) 

7 RESULTS AND DISCUSSION  

7.1 Streamline and Velocity Profiles 
According to the perturbation technique employed in section 
(4), the solution of the boundary value problem defined by 
(14c) is being: 

),(),( DeRe),r( 1001 ΨΨθΨ += ,               (33a) 
which shows that, the effective secondary flow of a viscoelas-
tic fluid results from the superposition of both inertia, ),( 01Ψ , 
and elastic, ),( 10Ψ , components. The different signs of the ex-
pressions in (21b) and (26b) show in fact that both effects have 
opposing tendencies in respect of the flow direction. There-
fore, the properties of the resultant streamline pattern depend 
on the relative magnitudes of the two effects, or more accu-
rately, on the ratio of Re to De. By using (21b) and (26b), it is 
possible to obtain the stream function in dimensionless form 
as: 
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From the definition of the stream function, (4), and by using 
(33b), it is possible to obtain the individual velocity compo-
nents U and V as: 

( )θΨ
θ θ

2
2

22 31112111 cos
rr

B
r
A,

s∇nr
U −






 −














 +−=

−
= ,        (34a) 

and 

θθΨ
θ

coss∇n
rr

B
r
A,

s∇nr
V r 






 −






 −==

113121
3 .            (34b) 

The known expressions for the velocity components must be 
introduced in the expression of V  to obtain the complete solu-
tion for the velocity field around the rotating sphere as: 

ϕθ ˆWˆVr̂UV )(0++= ,                 (35) 
As expected, the stream and velocity functions show that 

the flow field is under the effect of both inertial and elastic 
effects. The dimensionless quantity "B" in (33b) determines the 
shape of the streamline and velocity profiles while "A" deter-
mines their absolute values. Secondary flow is a consequence 
of interaction between both inertial and elastic forces. The flow 
pattern varies with the value of "B" as the following: 
1. For 3

1≤B , the inertial force determines the nature of flow 
field as in Figs. 2a, 3a and 4a. These forces caused fluid to 
be thrown outward centrifugally at equatorial zone. So, 
the secondary flow is directed to the inside at the poles 
( πθ ,0= ) and to the outside at the equator zone ( πθ 2

1= ). 
2. For 13

1 << B , the elastic forces dominate near the surface 
of the sphere and further away from the sphere, the iner-
tial forces dominate the flow situation. A complete picture 
of such flow situation is given in Figs. 2b, 3b and 4b. 

3. For 1≥B , the secondary flow due to elastic forces is dom-
inate, see Figs. 2c, 3c and 4c. It is directed to the inside in 
the equator zone and to the outside at the poles. The two 
zones being separated by conical surface given by 

o
m∇n .cos 75543

11 ≅= −θ . This behavior is in agreement 
with the flow pattern observed experimentally [12]. 

4. For 2>B , the shape of the streamline and velocity profile 
become independent on  B, see Figs. 2d, 3d and 4d. 

The primary flow, meridunal velocity )(W 0  in Fig. 5a, is a 
pure drag flow for which every fluid point revolves in a circle 
whose center lies on the axis of rotation. All particles that ro-
tate with the same angular velocity lie on one surface of rota-
tion. So, the flow field consists of a set of rotational symmetric 
layers, which rotate at various angular velocities around the 
common axis. So, the adjacent layers slide over each other and 
there is an overall shear flow that results from the zero-order 
stress component ),(

r
00

ϕτ , (23a). Fig. 5b shows that, ),(
r

00
ϕτ  

reaches its maximum value on the equator zone ( πθ 2
1= ) and 

vanishes at the poles ( πθ ,0= ). For shear flow, it is well 
known that the normal stress differences are proportional to 
the square of the shear rate [21]. Therefore, the fluid under the 
action of this normal stress difference flows inwards in the 
vicinity of the equator (high stress difference) and outwards at 
the poles (low stress difference).  
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Fig. 2b. Stream lines at 660.B = . Elastic forces dominate near 
the sphere surface and inertial forces dominate away from the 
sphere 
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Fig. 2c. Stream lines 2=B . Elastic force caused fluid to be 
thrown inward at equator zone. 
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Fig. 2d. Stream lines at 3=B . For 2>B , the shape of the 
streamline become independent on B . 
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Fig. 3a. Radial velocity at 230 πθ == ,.B . For 31<B , the 

inertial forces determine the nature of the radial velocity profiles. 
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Fig. 3b. Radial velocity at 2660 πθ == ,.B . For 131 << B , 

elastic forces dominate near the sphere surface and inertial 
forces dominate away from the sphere. 
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Fig. 2a. Stream lines at 30.B = . Inertial force caused fluid to be 
thrown outward centrifugally at the equatorial zone. 
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Fig. 3c. Radial velocity at 22 πθ == ,B . For 1≥B , elastic 

forces determine the nature of the radial velocity profiles. 
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Fig. 3d. Radial velocity at 23 πθ == ,B . For 2>B , the shape 

of the velocity profiles become independent on B . 
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Fig. 4a. Azimuthal velocity at 230 πθ == ,.B . For 31<B , the 

inertial forces determine the nature of the velocity profiles. 
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Fig. 4c. Azimuthal velocity at 22 πθ == ,B . For 1≥B , elastic 

forces determine the nature of the azimuthal velocity profiles. 
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Fig. 4d. Azimuthal velocity at 23 πθ == ,B . For 2>B , the 

shape of the velocity profiles become independent on B . 
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Fig. 4b. Azimuthal velocity at 2660 πθ == ,.B . For 131 << B , 

elastic forces dominate near the sphere surface and inertial 
forces dominate away from the sphere 
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7.2 Stagnation Stream Surface 
It is clear that, the properties of the resultant stream line pat-
tern depend on the numerical value of the parameter B. From  
(9) and (33c), we can write the parameter B as: 

2
214

R
)(B o

ρ
ηλλ −

= .                  (36) 

 Note that this parameter apart from the physical properties (ρ, oη , 

1λ  and 2λ ), depends only on radius of the sphere R, but not on its 

rate of rotation. Therefore, for a given viscoelastic fluid, the flow 
pattern can only be affected by the size of the rotating sphere. 

If the parameter oBB =  where oB  has its value between 3
1  

and one ( 13
1 << oB ) which can always be obtained by a 

suitable sized sphere, then a spherically shaped stagnation 
stream surface occurs in the fluid. As shown in Fig. 2b; the 
stream line of the normalized stream function ),r( θΨ  divides 

the annular region between the rotating sphere and the stag-
nation surface into four similar vortices symmetric about the 
axis of rotation. The elastic stress effect is dominant inside, so 
that the same direction results as shown in Fig. 2b. The exter-
nally prevailing inertia effect causes the outer vortices to ro-
tate in the opposite direction. 

The stagnation sphere of radius oR  is defined as the sur-
face for which 0=U . So by using (34a) we can calculate the 
value of oR  as: 

o

o
o B

BR
−

=
1
2 .                  (37) 

The effect of the stagnation surface on heat transfer process is 
discussed in more details in later section. 

7.3 Eddy Points 
The eddy points, or secondary flow centers, are defined as the 
points for which 0== VU . From (34a) and (34b) these points 
are given by: 

( ) 03111211 2
2

=−





 −














 +− θcos

rr
B ,             (38a) 

and 

01131 =





 −






 − θθ coss∇n

rr
B ,              (38b) 

Equation (38a) gives the radius oR  of the stagnation surface. 
Fig. 6 shows that, the eddy points are formed in the interior of 
the fluid between oRr <<1 . So, it may be calculated from 
(38a) and (38b) that, if an eddy point exists, it may lie either on 

o
m∇n .cos 7554311 ≅= −θ , 031 2 =− θcos , or on a circular 

streamline oc BRr 3==  for which 0=V , see the red circle in 

Fig. 6. So, the coordinates of any eddy is ( )o
o .,B 74543 . 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the temperature point of view, the circular streamline 
of radius oc BR 3=  divides the annular region between the 
solid sphere, 1=r , and the stagnation surface, oRr = , into 
two concentric parts. The inner region in the range cRr <<1  
represents a temperature suction region in which the rotating 
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Fig. 5a. Meridunal velocity )(W 0  at 2=B , and 
816141211 .,.,.,.,r = (top to bottom respectively) 
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Fig. 5b. Stress tensor component ),(
r

00
ϕτ  at 2=B , and  

816141211 .,.,.,.,r = (bottom to top respectively) 
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Fig. 6. Stagnation stream surface and eddy points  
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eddy absorb the temperature from the heated solid sphere and 
then inject it to the outer region in the range oc RrR << . 

7.4 Heat Transfer Results 
As we have seen in the previous sections, the flow depends on 
Re and De while the temperature distribution depends on Re, 
De and Pr. The solution of the energy equation is given by: 

),(),(),( TDeReTReTT 1102200 ++= .             (39a) 
The zero- and the higher-orders solution of the energy equa-
tion are given by (17d), (29b) and (32b) respectively. So, the 
resultant temperature is given by: 

( ) ( )[
( )]( )θ2543

4321

3141073

2371
21
2

cosrrrB

rrrPrArT

−+−−

+−+=

−−−

−−−

        (39b) 

In this study, it is more convenient to work in terms of the 
local Nusselt number, Nu, which can be obtained from the 
gradient of the temperature at the surface of the sphere and at 
the stagnation surface:  

( )( )θ22
11 313351 cosBPrA,TNu rr −−+−== =

,            (40a) 

( )θ2
2 31 cos,TNu

oRrr −== =
,              (40b) 

Figs. 7a and 7b show the local hemispheric Nusselt number 
distributions for the solid sphere and the stagnation surface 
( 21 Nu,Nu ) respectively at 660.B = , and 10.A = . At the equa-
tor, cold fluid was pulled from the stagnation surface to the 
solid sphere, and heat transfer from the solid sphere was at its 
greatest. Therefore, there was a local maximum for the 1Nu  
distribution. Afterwards, fluid moving up and down to the 
poles along the fluid was heated gradually by the hot wall. 
Meanwhile, the temperature gradient in the radial direction 
and 1Nu  decreased gradually forms a local 1Nu  minimum at 
the poles. By contrast, at the poles, where the stagnation 
sphere received heat from the hot radial outflow, heat transfer 
at the stagnation sphere was at its greatest, thereby forming a 
local maximum at 2Nu  distribution. Fluid returning to the 
equator along the stagnation sphere was then cooled gradual-
ly by the cold fluid. Meanwhile, the temperature gradient in 
the radial direction and 2Nu  decreased gradually forms local 
minimal of  2Nu  at the equator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

8 CONCLUSION  
The problem to be treated here is the study of the secondary 
flow effect on heat transfer from a rotating sphere to Oldroyd-
B fluid. With the help of the perturbation method, the govern-
ing equations are splitted into two parts: creeping part, and 
the deviation describing the disturbance due to inertia and 
elastic effects. The solution of the problem shows that, any 
rotation of the sphere set up a primary flow around the axis of 
rotation. This motion induces an unbalanced inertial and elas-
tic force fields which drives the secondary flow in the meridi-
an plane. The secondary flow produces forced convection 
within the fluid. The relative magnitudes of the secondary 
flow and forced convection effects depend on the parameters 
involved such as Reynolds, Deborah and Prandtl numbers. 

9 ESTIMATION OF THE ERROR DUE TO THE SHAFT 
In the absence of the shaft, the slow rotation of the sphere 
about the z-axis is supposed to create a laminar velocity field 
whose magnitude at the surface of the sphere is: 

θΩ s∇nRW Rr~ ==  ,                 (41) 
the shear stress due to this component, at the surface can be 
estimated as: 

θΩηητ s∇n,W oRr~r~oRr~ == == .                (42) 
The power required to overcome this stress in order to rotate 
the sphere is approximately 

[ ]∫∫ == =

ππ

Ωπηθθτϕ
0

32
3
82

2

0

Rds∇nRWdP oRr~W .              (43) 

This power is responsible for the torque acting on the sphere 
surface. 

In the presence of a cylindrical shaft, an additional velocity 
field is created due to its rotation. The tangential velocity 
component of this field in the neighborhood of its surface is: 

sRW Ω=
∗

,                  (44) 
where sR  is the radius of the shaft, see Fig. 8. Similarly, the 
stress created by this field requires an amount of power to 
rotate the shaft. This power is of magnitude 
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Fig. 7a. Nusselt number distributions for the solid sphere 
1=r  at 660.B = , 10.A =  and different values of Pr. 
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Fig. 7b. Nusselt number distributions for stagnation surface 
oRr =  at 660.B = , 10.A =  and different values of Pr. 
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∫∫ == =

∗∗∗ s

s

L

ssoRr~W LRds∇nR]W[dP
0

222
2

0

2 Ωπηθθτϕ
π

.           (45) 

The error caused by the shaft can be estimated as the ratio 

3

2

4
3

R
LR

P
P ss

W

W =

∗

.                  (46) 

Thus, using a shaft of much smaller radius than R may reduce 
this error. For example, let the radius of the sphere be 

Cm.R 42= . If the radius of the shaft is 0.16 Cm, and its length 
(under the fluid surface) is Cm.Ls 50= , then 

4
3

2
10946

424
501603 −

∗

×≤= .
).(

).().(
P
P

W

W .                 (47) 

 

10 APPENIX 
The components of the two vectors Γ  and Λ  defined by (8a) 
and (8b) are given by the following equations: 
(i) Components of  Γ  

ϕΓθΓΓΓ ˆˆr̂VV 321 ++=∇⋅= ,              (A.1) 
where 

( )22
1

1 WV,VU
r

,UUr̂ r −−+=⋅= θΓΓ , 

( )θΓθΓ θ cotWUV,VV
r

,UVˆ
r

2
2

1
−++=⋅= , 

( )θΓϕΓ θ cotVWUW,VW
r

,UWˆ r +++=⋅=
1

3 . 

(ii) Components of  Λ  

ϕΛθΛΛξτΛ ˆˆr̂d 3212 ++=






 −⋅∇=
∇∇

,              (A.2) 

where 
















 +−





 +−
















 −∂+














 −∂=

∇∇∇∇

∇∇∇∇

ϕϕθθϕϕθθ

θθθ

ξττ

ξτθ
θ

ξτΛ

dd
r

ds∇n
s∇nr

dr
r

rrrrrrr

21

2121 2
21






 −−
















 −∂+














 −∂=

∇∇

∇∇∇∇

ϕϕϕϕ

θθθθθθθ

ξτθ

ξτθ
θ

ξτΛ

d
r

cot

ds∇n
s∇nr

dr
r

rrr

2

2121 3
32

 
















 −∂+














 −∂=
∇∇∇∇

θϕθϕθϕϕ ξτθ
θ

ξτΛ ds∇n
s∇nr

dr
r

rrr 2121 2
2

3
33 . 

The components of the tensors 
∇
d,d  and 

∇
τ  which are need-

ed for calculating the components of the vector Λ  are: 
(i) Components of  d                (A.3) 

rrr ,Ud = , 

( )θθθ ,VU
r

d +=
1 , 

( )θϕϕ cotVU
r

d +=
1 ,  

( )V,rV,U
r

dd rrr −+== θθθ 2
1 , 

( )W,rW
r

dd rrr −==
2
1

ϕϕ , 

( )θθϕθθϕ cotW,W
r

dd −==
2
1 . 

(ii) Components of  
∇
d                (A.4) 

θθθ rrrrr,rrr,rrrr d,UrddVdrUdd 11 22 −−
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−−+= , 

θθθθθθθθθθθθ rr,r, d)V,rV(rddVdrUdd −−−+= −−
∇ 11 22 , 

θϕθϕϕϕϕϕϕϕθϕϕϕϕϕϕ ddddddVdrUdd rr,r, 4421 −−−+= −
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Fig. 8. Error due to the shaft 
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